Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm

2016-10-17
2016-01-2295
Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14:1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16:1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity.
Journal Article

Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel in an Optical CI Engine

2016-04-05
2016-01-0730
Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition (CI) engines that does not produce soot because the equivalence ratio at the lift-off length is less than or equal to approximately two. In addition to completely preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. Experiments were conducted in a heavy-duty CI engine that has been modified to provide optical access to the combustion chamber, to study whether LLFC is facilitated by an oxygenated fuel blend (T50) comprising a 1:1 mixture by volume of tri-propylene glycol mono-methyl ether with an ultra-low-sulfur #2 diesel emissions-certification fuel (CFA). Results from the T50 experiments are compared against baseline results using the CFA fuel without the oxygenate.
Journal Article

Investigation of Fuel Effects on In-Cylinder Reforming Chemistry Using Gas Chromatography

2016-04-05
2016-01-0753
Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Journal Article

Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling

2015-04-14
2015-01-0818
Negative valve overlap (NVO) is a viable control strategy that enables low-temperature gasoline combustion (LTGC) at low loads. Thermal effects of NVO fueling on main combustion are well understood, but fuel reforming chemistry during NVO has not been extensively studied. The objective of this work is to analyze the impact of global equivalence ratio and available oxidizer on NVO product concentrations. Experiments were performed in a LTGC single-cylinder engine under a sweep of NVO oxygen concentration and NVO fueling rates. Gas sampling at the start and end of the NVO period was performed via a custom dump-valve apparatus with detailed sample speciation by gas chromatography. Single-zone reactor models using detailed chemistry at relevant mixing and thermodynamic conditions were used in parallel to the experiments to evaluate expected yields of partially oxidized species under representative engine time scales.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Journal Article

Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes

2014-04-01
2014-01-1429
This paper first summarizes a new theoretical description that quantifies the effects of real-fluid thermodynamics on liquid fuel injection processes as a function of pressure at typical engine operating conditions. It then focuses on the implications this has on modeling such flows with emphasis on application of the Large Eddy Simulation (LES) technique. The theory explains and quantifies the major differences that occur in the jet dynamics compared to that described by classical spray theory in a manner consistent with experimental observations. In particular, the classical view of spray atomization as an appropriate model at some engine operating conditions is questionable. Instead, non-ideal real-fluid behavior must be taken into account using a multicomponent formulation that applies to hydrocarbon mixtures at high-pressure supercritical conditions.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

Two-Color Diffused Back-Illumination Imaging as a Diagnostic for Time-Resolved Soot Measurements in Reacting Sprays

2013-10-14
2013-01-2548
Despite ongoing research efforts directed at reducing engine-out emissions, diesel engines are known to be one of the largest sources of atmospheric particulate matter (i.e., soot). Quantitative measurements are of primary importance to address soot production during the combustion process in the cylinder of diesel engines. This study presents the capabilities of an extinction-based diagnostic developed to quantitatively measure the soot volume fraction in n-dodecane sprays injected in a high-pressure, high-temperature vessel. Coupled with high-speed imaging, the technique yields time-resolved measurements of the soot field by relying on a diffused back-illumination scheme to improve extinction quantification in the midst of intense beam steering. The experiments performed in this work used two wavelengths, which, when combined with the Rayleigh-Debye-Gans theory, provide information about the optical and physical properties of soot.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Optical Investigation of the Reduction of Unburned Hydrocarbons Using Close-Coupled Post Injections at LTC Conditions in a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0910
Partially premixed low-temperature combustion (LTC) using exhaust-gas recirculation (EGR) has the potential to reduce engine-out NOx and soot emissions, but increased unburned hydrocarbon (UHC) emissions need to be addressed. In this study, we investigate close-coupled post injections for reducing UHC emissions. By injecting small amounts of fuel soon after the end of the main injection, fuel-lean mixtures near the injector that suffer incomplete combustion can be enriched with post-injection fuel and burned to completion. The goal of this work is to understand the in-cylinder mechanisms affecting the post-injection efficacy and to quantify its sensitivity to operational parameters including post-injection duration, injection dwell, load, and ignition delay time of the post-injection mixture.
Journal Article

Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding

2013-04-08
2013-01-0917
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engine-out soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy.
Journal Article

In-Flame Soot Sampling and Particle Analysis in a Diesel Engine

2013-04-08
2013-01-0912
In-flame soot sampling based on the thermophoresis of particles and subsequent transmission electron microscope (TEM) imaging has been conducted in a diesel engine to study size, shape and structure of soot particles within the reacting diesel jet. A direct TEM sampling is pursued, as opposed to exhaust sampling, to gain fundamental insight about the structure of soot during key formation and oxidation stages. The size and shape of soot particles aggregate structure with stretched chains of spherical-like primary particles is currently an unknown for engine soot modelling approaches. However, the in-flame sampling of soot particles in the engine poses significant challenges in order to extract meaningful data. In this paper, the engine modification to address the challenges of high-pressure sealing and avoiding interference with moving valves and piston are discussed in detail.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Journal Article

NOx-Reduction by Injection-Timing Retard in a Stratified-Charge DISI Engine using Gasoline and E85

2012-09-10
2012-01-1643
The lean-burn stratified-charge DISI engine has a strong potential for increased thermal efficiency compared to the traditional throttled SI engine. This experimental study of a spray-guided stratified-charge combustion system compares the engine response to injection-timing retard for gasoline and E85. Focus is on engine-out NO and soot, and combustion stability. The results show that for either fuel, injection-timing retard lowers the engine-out NO emissions. This is partly attributed to a combination of lower peak-combustion temperatures and shorter residence time at high temperatures, largely caused by a more retarded combustion phasing. However, for the current conditions using a single-injection strategy, the potential of NO reduction with gasoline is limited by both elevated soot emissions and the occurrence of misfire cycles. In strong contrast, when E85 fuel is used, the combustion system responds very well to injection-timing retard.
Journal Article

Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions

2012-04-16
2012-01-0692
The performance of Partially Premixed Compression Ignition (PPCI) combustion relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. In fact, the mixture distribution has direct control over the engine-out emissions as well as the rate of heat release during combustion. The current study focuses on investigating the pre-combustion equivalence ratio distribution in a light-duty diesel engine operating at a low-load (3 bar IMEP), highly dilute (10% O₂), slightly boosted (P ⁿ = 1.5 bar) PPCI condition. A tracer-based planar laser-induced fluorescence (PLIF) technique was used to acquire two-dimensional equivalence ratio measurements in an optically accessible diesel engine that has a production-like combustion chamber geometry including a re-entrant piston bowl.
Journal Article

Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines

2012-04-16
2012-01-1258
This paper provides an analysis of high-pressure phenomena and its potential effects on the fundamental physics of fuel injection in Diesel engines. In particular, we focus on conditions when cylinder pressures exceed the thermodynamic critical pressure of the injected fuel and describe the major differences that occur in the jet dynamics compared to that described by classical spray theory. To facilitate the analysis, we present a detailed model framework based on the Large Eddy Simulation (LES) technique that is designed to account for key high-pressure phenomena. This framework is then used to perform a thermodynamic analysis of the flow. We focus on the experiments being conducted in the high-pressure combustion vessel at Sandia National Laboratories using n-heptane as a reference fuel. The calculations are performed by rigorously treating the experimental geometry and operating conditions, with detailed treatment of relevant thermophysical mixture properties.
X